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² Introduction
® What is a ferroelectric
® Concentrate on epitaxial films
® Oxide perovskite system

² Structural response of epitaxial
ferroelectric to electric field
® examples of dynamic studies

² Summary and Conclusions
® Domain studies, device studies, 

future studies require 
microbeams.
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What are ferroelectrics?What are ferroelectrics?

² Spontaneous permanent electric polarization. 
² Unit cell of crystal is non-centrosymmetric (charges separated)
² A macroscopic sample with net zero polarization

® combination of microscopic polarized domains.
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What are ferroelectrics?What are ferroelectrics?
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Synchrotron techniques are well matched to Synchrotron techniques are well matched to 
the study of the ferroelectric systemsthe study of the ferroelectric systems

² Structure-property relationships control:

® dielectric, ferroelectric, piezoelectric, electrostrictive, pyroelectric and 
electro-optical properties

for actuators, sensors, electro-optical switches, non-volatile memory 
elements, hi-K dielectric, detectors…

² Scattering and diffraction examine the structural aspects that 
control the properties

® Symmetry changes, orientation, lattice parameters, domains 
configurations
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Scattering example: fingerprints domain Scattering example: fingerprints domain 
evolutionevolution

² Time-resolved scattering
® 40 nm Pb(Ti,Zr)O3 film
® 200 Hz

² Scattering profile can fingerprint the domain configuration in 
epitaxial films
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High speed timeHigh speed time--resolved Methods resolved Methods 
(BESSRC 12(BESSRC 12--IDID--D) D) 

² At each voltage, collect all 
scattering (area detector)

² Utilizes rocking curve of sample 
to “scan” q
® Chopper synchronized (Hybrid 

fill: Singlet produces <100 
psec x-ray probe pulses

® Electrical stimulation of device 
synchronized/delayed so that 
sample is in particular electrical 
state during exposure
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CloseClose--up photograph of sample up photograph of sample 
manipulation and contact regionmanipulation and contact region

50 µm capacitor

² X-ray spot must be 
smaller than the device.

² And x-ray spot must be 
aligned with the device 
under electrical 
stimulation.

Spot size used:5µm x 5µm
K-B mirror focus
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Reciprocal Space Map 001Reciprocal Space Map 001

² Initial experiments: Focus on 
position of film Bragg peak 
region and its immediate 
neighborhood.

® Scattering shown for epitaxial 
films (thickness~250nm) of 
PMN and PMN-PT
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PMNPMN77--PTPT33 Structural Response to a Step VoltageStructural Response to a Step Voltage
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² Response (speed) limited by size of device, not by how fast we 
can measure with x-rays yet 

² Smaller devices – smaller beams
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Summary and ConclusionSummary and Conclusion

² Structural techniques available at synchrotrons well suited to 
ferroelectric systems
® And it’s a growing field: see also other groups doing exciting studies 

of ferroelectric films and crystals using microdiffraction, x-ray 
topography, and reciprocal space mapping.

² Examples from our work: 
® Progress in development of techniques to study structural response at 

100 psec time scale
® Need to go to smaller devices, embedded devices

Progress in switching studies: to 50 µm ‘play’ device: switching speed 
limited to ~10nsec

Smaller devices allow faster switching
Need for microbeam capabilities
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Direct observation of inversely polarized frozen 
nanodomains in fatigued, ferroelectric memory 
capacitors, E. L. Colla, I. Stolichnov, P. E. Bradely, and 
N. Setter, Appl Phys. Lett. 82, 1604 (2003).

Samples: Pt-PZT-Pt films.

Preferred Domain Pinning Preferred Domain Pinning 

² Piezo-response atomic force microscopy:
® Recent direct observation of preferred domain pinning in fatigued 

ferroelectric films is reported using piezo-response atomic force 
microscopy. 
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TimeTime--Resolved Synchrotron XResolved Synchrotron X--Ray ScatteringRay Scattering

² Data taken on 250 nm thick PMN-PT film (PT ~30-35%)
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Lattice response: timeLattice response: time--resolved resolved 
xx--ray diffractionray diffraction

² Lattice response on 
different time scales
® pulse with ~15 

nsec rise time

® 6.3 kHz triangle 
wave (“80 µsec 
rise time”)
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